Computable Jordan Decomposition of Linear Continuous Functionals on **C[0; 1]**

Tahereh Jafarikhah, Massoud Pourmahdian, Klaus Weihrauch

University of Tarbiat Modares, Tehran Amirkabir University of Technology, Tehran University of Hagen, Hagen,

Nancy, July 8-10, 2013

Weak decomposition theorems

Linear continuous functionals $F: C[0;1] \to \mathbb{R}$:

Theorem For every F there are non-decreasing functionals F^+, F^- such that $F = F^+ - F^-$.

Functions of bounded variation $g:[0;1] \to \mathbb{R}$

Theorem For every g there are non-decreasing functions g^+,g^- such that $g=g^+-g^-$

Signed measures on [0; 1] of finite variation norm $\mu: \mathcal{B} \to \mathbb{R}$

Theorem For every μ there are non-negative measures μ^+, μ^- such that $\mu = \mu^+ - \mu^-$.

In each case there is a minimal decomposition.

linear continuous functionals

```
C[0;1]:= the set of continuous functions h:[0;1] \to \mathbb{R} \|h\|:=\max_{|x|\leq 1}|h(x)| C'[0;1]:= the set of linear continuous functions F:C[0;1]\to \mathbb{R} \|F\|:=\sup_{\|h\|<1}|F(h)|
```

linear continuous functionals

```
C[0;1]:= the set of continuous functions h:[0;1] \to \mathbb{R} \|h\|:=\max_{|x|\leq 1}|h(x)| C'[0;1]:= the set of linear continuous functions F:C[0;1]\to \mathbb{R} \|F\|:=\sup_{\|h\|<1}|F(h)|
```

Examples

$$-F(h) := \int h(x) dx$$
 (Riemann integral)
 $-F(h) := -h(1/2)$

bv-functions and Riemann-Stieltjes integral

```
For g:[0;1] \to \mathbb{R} and partition Z = \{0 = x_0 < x_1 < \ldots < x_n = 1\}, S(g,Z) := \sum_{i=1}^n |g(x_i) - g(x_{i-1})| \text{ (sum of heights of jumps)} \operatorname{Var}(g) := \sup_{Z} S(g,Z) \text{ (Variation of } g) For continuous h:[0;1] \to \mathbb{R} S(g,h,Z) := \sum_{i=1}^n h(x_i)(g(x_i) - g(x_{i-1})) \int h \, \mathrm{d} g := \lim_{Z} S(g,h,Z) \text{ (Riemann-Stieltjes integral)} \int h \, \mathrm{d} g \text{ exists if } \operatorname{Var}(g) < \infty
```

bv-functions and Riemann-Stieltjes integral

For
$$g:[0;1] \to \mathbb{R}$$
 and partition $Z = \{0 = x_0 < x_1 < \ldots < x_n = 1\},$ $S(g,Z) := \sum_{i=1}^n |g(x_i) - g(x_{i-1})| \text{ (sum of heights of jumps)}$ $\operatorname{Var}(g) := \sup_{Z} S(g,Z) \text{ (Variation of } g)$ For continuous $h:[0;1] \to \mathbb{R}$ $S(g,h,Z) := \sum_{i=1}^n h(x_i)(g(x_i) - g(x_{i-1}))$ $\int h \, \mathrm{d} g := \lim_{Z} S(g,h,Z) \text{ (Riemann-Stieltjes integral)}$ $\int h \, \mathrm{d} g \text{ exists if } \operatorname{Var}(g) < \infty$

Normalization: For every g of bounded variation there is some g' of bounded variation such that for 0 < x < 1,

$$g'(0) = 0$$
, $\lim_{y \to x} g(y) = g(x)$ and $\int h \, dg = \int h \, dg'$.

bv-functions and Riemann-Stieltjes integral

For
$$g:[0;1] \to \mathbb{R}$$
 and partition $Z = \{0 = x_0 < x_1 < \ldots < x_n = 1\},$ $S(g,Z) := \sum_{i=1}^n |g(x_i) - g(x_{i-1})| \text{ (sum of heights of jumps)}$ $\operatorname{Var}(g) := \sup_{Z} S(g,Z) \text{ (Variation of } g)$ For continuous $h:[0;1] \to \mathbb{R}$ $S(g,h,Z) := \sum_{i=1}^n h(x_i)(g(x_i) - g(x_{i-1}))$ $\int h \, \mathrm{d} g := \lim_{Z} S(g,h,Z) \text{ (Riemann-Stieltjes integral)}$ $\int h \, \mathrm{d} g \text{ exists if } \operatorname{Var}(g) < \infty$

Normalization: For every g of bounded variation there is some g' of bounded variation such that for 0 < x < 1,

$$g'(0) = 0$$
, $\lim_{y \nearrow x} g(y) = g(x)$ and $\int h \, dg = \int h \, dg'$.

Examples

$$-g(x) := x$$
, $\int h \, dg = \int h(x) \, dx$ (Riemann integral)
 $-g(x) := (0 \text{ if } x < 1/2, -1 \text{ else})$. $\int h \, dg = -h(1/2)$

signed measures and integral of cont. functions

```
\mu: \mathcal{B} \to \mathbb{R} \mathcal{B} = the Borel-subsets of [0;1] \mu(\bigcup_{i=0}^{\infty} A_i) = \sum_{i=0}^{\infty} \mu(A_i) for pairwise disjoint A_i. For partition \Pi of [0;1] into intervals (a,b), [a;b) etc. S(\mu,\Pi) := \sum_{I \in \Pi} |\mu(I)| \|\mu\| := \sup_{\Pi} S(\mu,\Pi) (Variation norm) For continuous h: [0;1] \to \mathbb{R}, S(\mu,h,\Pi) := \sum_{I \in \Pi} \inf_{\Pi} h[I] \cdot \mu(I) \int_{\Pi} h \, \mathrm{d}\mu = \lim_{\Pi} S(\mu,h,\Pi) \int_{\Pi} h \, \mathrm{d}\mu \text{ exists if } \|\mu\| < \infty
```

signed measures and integral of cont. functions

```
\mu: \mathcal{B} \to \mathbb{R} \mathcal{B} = \text{the Borel-subsets of } [0; 1]
       \mu(\bigcup_{i=0}^{\infty} A_i) = \sum_{i=0}^{\infty} \mu(A_i) for pairwise disjoint A_i.
For partition \Pi of [0;1] into intervals (a,b), [a;b) etc.
       S(\mu,\Pi) := \sum_{I \in \Pi} |\mu(I)|
             \|\mu\| := \sup_{\Pi} S(\mu, \Pi) (Variation norm)
For continuous h:[0;1] \to \mathbb{R},
       S(\mu, h, \Pi) := \sum_{I \in \Pi} \inf h[I] \cdot \mu(I)
       \int h d\mu := \lim_{\Pi} S(\mu, h, \Pi)
\int h \, \mathrm{d}\mu exists if \|\mu\| < \infty
```

Examples

```
– Lebesgue measure \lambda, \lambda(a;b) := b - a, \int h \, \mathrm{d}\lambda = \int h(x) \, \mathrm{d}x
– \mu(I) := (-1 \text{ if } 1/2 \in I, 0 \text{ else}), \int h \, \mathrm{d}\mu : -h(1/2)
```


Riesz representation theorem

Theorem

- 1. For every linear continuous functional F there is a unique normalized function g of bounded variation such that $F(h) = \int h \, dg$ and $||F|| = \operatorname{Var}(g)$.
- 2. For every normalized function ${\it g}$ of bounded variation there is a unique signed measure μ such that

$$\int h \, \mathrm{d}g = \int h \, \mathrm{d}\mu$$
 and $\mathrm{Var}(g) = \|\mu\|$.

3. for every signed measure μ there is a unique linear continuous functional F such that

$$\int h \, \mathrm{d}\mu = F(h) \qquad \text{ and } \|\mu\| = \|F\|.$$

The first statement: Riesz representation theorem

Strong Jordan decomposition

Call
$$Y = Y^+ - Y^-$$
 a minimal decomposition iff $Y = Z^+ - Z^-$ implies $Y^+ \le Z^+$ and $Y^- \le Z^-$.

Theorem (Jordan decomposition)

- 1. Every linear continuous functional F has a minimal decomposition $F = F^+ F^-$ into non-decreasing linear continuous functionals.
- 2. Every normalized function g of bounded variation has a minimal decomposition $g = g^+ g^-$ into non-decreasing normalized functions of bounded variation.
- 3. Every signed measure μ has a minimal decomposition $\mu = \mu^+ \mu^-$ into non-negative measures.

characterization of minimality

Theorem

- 1. A decomposition $F = H^+ H^-$ into non-negative functionals is minimal iff $||F|| = ||H^+|| + ||H^-||$.
- 2. A decomposition $g = s^+ s^-$ into non-decreasing functions is minimal iff $Var(g) = Var(s^+) + Var(s^-)$.
- 3. A decomposition $\mu = \nu^+ \nu^-$ into non-negative measures is minimal iff $\|\mu\| = \|\nu^+\| + \|\nu^-\|$.

simple computability on operators and by-functions

- C[0;1]: Cauchy representation δ_C , rational polygons are dense
- C'[0;1]: $[\delta_C \to \rho]$ (represents all continuous functions)

simple computability on operators and bv-functions

- C[0;1]: Cauchy representation δ_C , rational polygons are dense
- C'[0;1]: $[\delta_C \to \rho]$ (represents all continuous functions)

- $\mathrm{BV_0}$:= normalized functions of bounded variation: ($\int h \,\mathrm{d}g$ can be computed from $\mathrm{Var}(g)$ and g restricted to a countable dense subset.)

$$\delta_0(p) = g$$
 iff p encodes a sequence $(x_i, y_i)_{i \in \mathbb{N}}$ from \mathbb{R}^2 such that $-$ the set $A_p := \{x_i \mid i > 1\}$ is dense and g is continuous on $A_p - (\forall i) g(x_i) = y_i$, and $-x_0 = y_0 = 0$ and $x_1 = 1$

simple computability on measures

- BM the bounded non-negative Borel measures on [0; 1]:

```
\delta_m \langle p, q \rangle = \mu
 iff \mu[0; 1] = \rho(p) and q is a list of all (a, I) (a \in \mathbb{Q}, I \text{ open rational interval}) such that a < \mu(I).
```

Lemma

 δ_m is the greatest (poorest) representation γ of BM such that $(h,\mu) \mapsto \int h \, \mathrm{d}\mu$ is (δ_C,γ) -computable.

simple computability on measures

- BM the bounded non-negative Borel measures on [0; 1]:

$$\delta_m \langle p, q \rangle = \mu$$
 iff $\mu[0; 1] = \rho(p)$ and q is a list of all (a, I) $(a \in \mathbb{Q}, I \text{ open rational interval})$ such that $a < \mu(I)$.

Lemma

 δ_m is the greatest (poorest) representation γ of BM such that $(h,\mu) \mapsto \int h \, \mathrm{d}\mu$ is (δ_C,γ) -computable.

- SBM the set of signed Borel measures:

 $\delta_{\rm sm}\langle p,q \rangle = \delta_m(p) - \delta_m(q)$ (difference of non-negative measures)

Computable Riesz representation

Theorem

- 1. The function $(F, ||F||) \mapsto (g, \operatorname{Var}(g))$ is computable where $F(h) = \int h \, \mathrm{d}g$ and $||F|| = \operatorname{Var}(g)$.
- 2. The function $(g, \operatorname{Var}(g)) \mapsto (\mu, \|\mu\|)$ is computable where $\int h \, \mathrm{d}g = \int h \, \mathrm{d}\mu$ and $\operatorname{Var}(g) = \|\mu\|$.
- 3. The function $(\mu, \|\mu\|) \mapsto (F, \|F\|)$ is computable where $\int h d\mu = F(h)$ and $\|F\| = \|\mu\|$.
- 1. is the computable Riesz representation theorem.

Computable Riesz representation

Theorem

- 1. The function $(F, ||F||) \mapsto (g, \operatorname{Var}(g))$ is computable where $F(h) = \int h \, \mathrm{d}g$ and $||F|| = \operatorname{Var}(g)$.
- 2. The function $(g, \operatorname{Var}(g)) \mapsto (\mu, \|\mu\|)$ is computable where $\int h \, \mathrm{d}g = \int h \, \mathrm{d}\mu$ and $\operatorname{Var}(g) = \|\mu\|$.
- 3. The function $(\mu, \|\mu\|) \mapsto (F, \|F\|)$ is computable where $\int h d\mu = F(h)$ and $\|F\| = \|\mu\|$.
- 1. is the computable Riesz representation theorem.

Corollary The three representations of the space C'[0;1] via the names of (F, ||F||) of (g, Var(g)) and of $(\mu, ||\mu||)$ are equivalent. (correspondingly for the space of normalized by-functions and of the signed measures)

Computable Jordan decomposition

Theorem

The following functions for minimal decomposition and their inverses are computable:

$$(F, ||F||) \mapsto (F^+, F^-)$$

 $(g, Var(g)) \mapsto (g^+, g^-)$
 $(\mu, ||\mu||) \mapsto (\mu^+, \mu^-)$

Computable Jordan decomposition

Theorem

The following functions for minimal decomposition and their inverses are computable:

$$(F, ||F||) \mapsto (F^+, F^-)$$

 $(g, Var(g)) \mapsto (g^+, g^-)$
 $(\mu, ||\mu||) \mapsto (\mu^+, \mu^-)$

Corollary The representations of C'[0;1] via the names of the minimal decompositions (F^+,F^-) , (g^+,g^-) and (μ^+,μ^-) are equivalent to the former ones.

(correspondingly for the space of normalized by-functions and of the signed measures)

exceptional points

For interval I let $||F||_I := \sup\{|F(h)| \mid \operatorname{supp}(h) \subseteq I, ||h|| \le 1\}$,

For functionals F, by-functions g and signed measures μ such that $F(h) = \int h \, \mathrm{d}g = \int h \, \mathrm{d}\mu$

$$\lim_{x \in I, \lg(\mathbf{I}) \to 0} \|F\|_I = \left| \lim_{y \searrow x} g(y) - \lim_{y \nearrow x} g(y) \right| = \left| \mu(\{x\}) \right|$$

The three concepts are equivalent:

Our names do not tell us where these exceptional points are.

