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Weak decomposition theorems

Linear continuous functionals F : C [0; 1]→ R:

Theorem For every F there are non-decreasing functionals F+,F−

such that F = F+ − F− .

Functions of bounded variation g : [0; 1]→ R

Theorem For every g there are non-decreasing functions g+, g−

such that g = g+ − g−

Signed measures on [0; 1] of finite variation norm µ : B → R

Theorem For every µ there are non-negative measures µ+, µ−

such that µ = µ+ − µ−.

In each case there is a minimal decomposition.
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linear continuous functionals

C [0; 1] := the set of continuous functions h : [0; 1]→ R
‖h‖ := max|x |≤1 |h(x)|

C ′[0; 1] := the set of linear continuous functions F : C [0; 1]→ R
‖F‖ := sup‖h‖≤1 |F (h)|

Examples
– F (h) :=

∫
h(x) dx (Riemann integral)

– F (h) := −h(1/2)
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bv-functions and Riemann-Stieltjes integral

For g : [0; 1]→ R and partition
Z = {0 = x0 < x1 < . . . < xn = 1},

S(g ,Z ) :=
∑n

i=1 |g(xi )− g(xi−1)| (sum of heights of jumps)
Var(g) := supZ S(g ,Z ) (Variation of g)

For continuous h : [0; 1]→ R
S(g , h,Z ) :=

∑n
i=1 h(xi )(g(xi )− g(xi−1))∫

h dg := limZ S(g , h,Z ) (Riemann-Stieltjes integral)∫
h dg exists if Var(g) <∞

Normalization: For every g of bounded variation there is some g ′

of bounded variation such that for 0 < x < 1,
g ′(0) = 0, limy↗x g(y) = g(x) and

∫
h dg =

∫
h dg ′.

Examples
– g(x) := x ,

∫
h dg =

∫
h(x) dx (Riemann integral)

– g(x) := (0 if x ≤ 1/2, −1 else).
∫
h dg = −h(1/2)
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signed measures and integral of cont. functions

µ : B → R B = the Borel-subsets of [0; 1]
µ(
⋃∞

i=0 Ai ) =
∑∞

i=0 µ(Ai ) for pairwise disjoint Ai .

For partition Π of [0; 1] into intervals (a, b), [a; b) etc.
S(µ,Π) :=

∑
I∈Π |µ(I )|

‖µ‖ := supΠ S(µ,Π) (Variation norm)

For continuous h : [0; 1]→ R,
S(µ, h,Π) :=

∑
I∈Π inf h[I ] · µ(I )∫

h dµ := limΠ S(µ, h,Π)∫
h dµ exists if ‖µ‖ <∞

Examples
– Lebesgue measure λ, λ(a; b) := b − a,

∫
h dλ =

∫
h(x) dx

– µ(I ) := (−1 if 1/2 ∈ I , 0 else),
∫
h dµ : −h(1/2)
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Riesz representation theorem

Theorem

1. For every linear continuous functional F there is a unique
normalized function g of bounded variation such that

F (h) =
∫
h dg and ‖F‖ = Var(g).

2. For every normalized function g of bounded variation there is
a unique signed measure µ such that∫

h dg =
∫
h dµ and Var(g) = ‖µ‖.

3. for every signed measure µ there is a unique linear continuous
functional F such that∫

h dµ = F (h) and ‖µ‖ = ‖F‖.

The first statement: Riesz representation theorem
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Strong Jordan decomposition

Call Y = Y + − Y− a minimal decomposition iff
Y = Z+ − Z− implies Y + ≤ Z+ and Y− ≤ Z−.

Theorem (Jordan decomposition)

1. Every linear continuous functional F has a minimal
decomposition F = F+ − F− into non-decreasing linear
continuous functionals.

2. Every normalized function g of bounded variation has a
minimal decomposition g = g+ − g− into non-decreasing
normalized functions of bounded variation.

3. Every signed measure µ has a minimal decomposition
µ = µ+ − µ− into non-negative measures.
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characterization of minimality

Theorem

1. A decomposition F = H+ − H− into non-negative functionals
is minimal iff ‖F‖ = ‖H+‖+ ‖H−‖.

2. A decomposition g = s+ − s− into non-decreasing functions is
minimal iff Var(g) = Var(s+) + Var(s−).

3. A decomposition µ = ν+ − ν− into non-negative measures is
minimal iff ‖µ‖ = ‖ν+‖+ ‖ν−‖.
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simple computability on operators and bv-functions

– C [0; 1]: Cauchy representation δC , rational polygons are dense

– C ′[0; 1]: [δC → ρ] (represents all continuous functions)

– BV0 := normalized functions of bounded variation:
(
∫
h dg can be computed from Var(g) and g restricted to a countable

dense subset.)

δ0(p) = g iff
p encodes a sequence (xi , yi )i∈N from R2 such that
– the set Ap := {xi | i > 1} is dense and g is continuous on Ap

– (∀i) g(xi ) = yi , and
– x0 = y0 = 0 and x1 = 1
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simple computability on measures

– BM the bounded non-negative Borel measures on [0; 1]:

δm〈p, q〉 = µ iff µ[0; 1] = ρ(p) and q is a list of all (a, I )
(a ∈ Q, I open rational interval) such that a < µ(I ).

Lemma
δm is the greatest (poorest) representation γ of BM such that
(h, µ) 7→

∫
h dµ is (δC , γ)-computable.

– SBM the set of signed Borel measures:
δsm〈p, q〉 = δm(p)− δm(q) (difference of non-negative measures)
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Computable Riesz representation

Theorem

1. The function (F , ‖F‖) 7→ (g ,Var(g)) is computable
where F (h) =

∫
h dg and ‖F‖ = Var(g) .

2. The function (g ,Var(g)) 7→ (µ, ‖µ‖) is computable
where

∫
h dg =

∫
h dµ and Var(g) = ‖µ‖ .

3. The function (µ, ‖µ‖) 7→ (F , ‖F‖) is computable
where

∫
h dµ = F (h) and ‖F‖ = ‖µ‖.

1. is the computable Riesz representation theorem.

Corollary The three representations of the space C ′[0; 1] via the
names of (F , ‖F‖) of (g ,Var(g)) and of (µ, ‖µ‖) are equivalent.
(correspondingly for the space of normalized bv-functions and of
the signed measures)
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Computable Jordan decomposition

Theorem
The following functions for minimal decomposition and their
inverses are computable:

(F , ‖F‖) 7→ (F+,F−)

(g ,Var(g)) 7→ (g+, g−)

(µ, ‖µ‖) 7→ (µ+, µ−)

Corollary The representations of C ′[0; 1] via the names of the
minimal decompositions (F+,F−), (g+, g−) and (µ+, µ−) are
equivalent to the former ones.
(correspondingly for the space of normalized bv-functions and of
the signed measures)
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exceptional points

For interval I let ‖F‖I := sup{|F (h)| | supp(h)⊆I , ‖h‖ ≤ 1},

For functionals F , bv-functions g and signed measures µ such that
F (h) =

∫
h dg =

∫
h dµ

lim
x∈I ,lg(I)→0

‖F‖I = | lim
y↘x

g(y)− lim
y↗x

g(y)| = |µ({x})|

The three concepts are equivalent:

x contributes to F :⇐⇒ ‖F‖x := inf
x∈I
‖F‖I > 0 ,

g is discontinuous at x ⇐⇒ lim
y↘x

g(y) 6= g(x) ,

x contributes to µ :⇐⇒ µ({x}) 6= 0 .

Our names do not tell us where these exceptional points are.
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