Computable Jordan Decomposition of Linear Continuous Functionals on $\mathbf{C}[\mathbf{0} ; 1]$

Tahereh Jafarikhah, Massoud Pourmahdian, Klaus Weihrauch
University of Tarbiat Modares, Tehran
Amirkabir University of Technology, Tehran University of Hagen, Hagen,

Nancy, July 8-10, 2013

Weak decomposition theorems

Linear continuous functionals $F: C[0 ; 1] \rightarrow \mathbb{R}$:

Theorem For every F there are non-decreasing functionals F^{+}, F^{-} such that $F=F^{+}-F^{-}$.

Functions of bounded variation $g:[0 ; 1] \rightarrow \mathbb{R}$
Theorem For every g there are non-decreasing functions g^{+}, g^{-} such that $g=g^{+}-g^{-}$

Signed measures on $[0 ; 1]$ of finite variation norm $\mu: \mathcal{B} \rightarrow \mathbb{R}$
Theorem For every μ there are non-negative measures μ^{+}, μ^{-} such that $\mu=\mu^{+}-\mu^{-}$.

In each case there is a minimal decomposition.

linear continuous functionals

$C[0 ; 1]:=$ the set of continuous functions $h:[0 ; 1] \rightarrow \mathbb{R}$ $\|h\|:=\max _{|x| \leq 1}|h(x)|$
$C^{\prime}[0 ; 1]:=$ the set of linear continuous functions $F: C[0 ; 1] \rightarrow \mathbb{R}$ $\|F\|:=\sup _{\|h\| \leq 1}|F(h)|$

linear continuous functionals

$C[0 ; 1]:=$ the set of continuous functions $h:[0 ; 1] \rightarrow \mathbb{R}$
$\|h\|:=\max _{|x| \leq 1}|h(x)|$
$C^{\prime}[0 ; 1]:=$ the set of linear continuous functions $F: C[0 ; 1] \rightarrow \mathbb{R}$
$\|F\|:=\sup _{\|h\| \leq 1}|F(h)|$
Examples

- $F(h):=\int h(x) \mathrm{d} x$ (Riemann integral)
$-F(h):=-h(1 / 2)$

bv-functions and Riemann-Stieltjes integral

For $g:[0 ; 1] \rightarrow \mathbb{R}$ and partition
$Z=\left\{0=x_{0}<x_{1}<\ldots<x_{n}=1\right\}$,

$$
\begin{aligned}
& S(g, Z):=\sum_{i=1}^{n}\left|g\left(x_{i}\right)-g\left(x_{i-1}\right)\right| \quad \text { (sum of heights of jumps) } \\
& \left.\operatorname{Var}(g):=\sup _{Z} S(g, Z) \quad \text { (Variation of } g\right)
\end{aligned}
$$

For continuous $h:[0 ; 1] \rightarrow \mathbb{R}$

$$
\begin{aligned}
& S(g, h, Z):=\sum_{i=1}^{n} h\left(x_{i}\right)\left(g\left(x_{i}\right)-g\left(x_{i-1}\right)\right) \\
& \int h \mathrm{~d} g:=\lim _{Z} S(g, h, Z) \quad \text { (Riemann-Stieltjes integral) } \\
& \int h \mathrm{~d} g \text { exists if } \operatorname{Var}(g)<\infty
\end{aligned}
$$

bv-functions and Riemann-Stieltjes integral

For $g:[0 ; 1] \rightarrow \mathbb{R}$ and partition
$Z=\left\{0=x_{0}<x_{1}<\ldots<x_{n}=1\right\}$,

$$
\begin{aligned}
& S(g, Z):=\sum_{i=1}^{n}\left|g\left(x_{i}\right)-g\left(x_{i-1}\right)\right| \quad \text { (sum of heights of jumps) } \\
& \left.\operatorname{Var}(g):=\sup _{Z} S(g, Z) \quad \text { (Variation of } g\right)
\end{aligned}
$$

For continuous $h:[0 ; 1] \rightarrow \mathbb{R}$

$$
\begin{aligned}
& S(g, h, Z):=\sum_{i=1}^{n} h\left(x_{i}\right)\left(g\left(x_{i}\right)-g\left(x_{i-1}\right)\right) \\
& \int h \mathrm{~d} g:=\lim _{Z} S(g, h, Z) \quad \text { (Riemann-Stieltjes integral) } \\
& \int h \mathrm{~d} g \text { exists if } \operatorname{Var}(g)<\infty
\end{aligned}
$$

Normalization: For every g of bounded variation there is some g^{\prime} of bounded variation such that for $0<x<1$,
$g^{\prime}(0)=0, \lim _{y} \gamma_{x} g(y)=g(x)$ and $\int h \mathrm{~d} g=\int h \mathrm{~d}^{\prime}$.

bv-functions and Riemann-Stieltjes integral

For $g:[0 ; 1] \rightarrow \mathbb{R}$ and partition
$Z=\left\{0=x_{0}<x_{1}<\ldots<x_{n}=1\right\}$,

$$
\begin{aligned}
& S(g, Z):=\sum_{i=1}^{n}\left|g\left(x_{i}\right)-g\left(x_{i-1}\right)\right| \quad \text { (sum of heights of jumps) } \\
& \left.\operatorname{Var}(g):=\sup _{Z} S(g, Z) \quad \text { (Variation of } g\right)
\end{aligned}
$$

For continuous $h:[0 ; 1] \rightarrow \mathbb{R}$

$$
\begin{aligned}
& S(g, h, Z): \\
& \int h \mathrm{~d} g:=\sum_{i=1}^{n} h\left(x_{i}\right)\left(g\left(x_{i}\right)-g\left(x_{i-1}\right)\right) \\
&\left.\int h \mathrm{~d} g \text { exists if } \operatorname{Var}(g)<\infty, Z\right) \quad \text { (Riemann-Stieltjes integral) }
\end{aligned}
$$

Normalization: For every g of bounded variation there is some g^{\prime} of bounded variation such that for $0<x<1$,
$g^{\prime}(0)=0, \lim _{y} \gamma_{x} g(y)=g(x)$ and $\int h \mathrm{~d} g=\int h \mathrm{~d}^{\prime}$.

Examples

$-g(x):=x, \quad \int h \mathrm{~d} g=\int h(x) \mathrm{d} x \quad$ (Riemann integral)
$-g(x):=(0$ if $x \leq 1 / 2,-1$ else $) . \quad \int h \mathrm{~d} g=-h(1 / 2)$

signed measures and integral of cont. functions

$\mu: \mathcal{B} \rightarrow \mathbb{R} \quad \mathcal{B}=$ the Borel-subsets of $[0 ; 1]$

$$
\mu\left(\bigcup_{i=0}^{\infty} A_{i}\right)=\sum_{i=0}^{\infty} \mu\left(A_{i}\right) \text { for pairwise disjoint } A_{i} .
$$

For partition Π of $[0 ; 1]$ into intervals $(a, b),[a ; b)$ etc.

$$
\begin{aligned}
S(\mu, \Pi) & :=\sum_{I \in \Pi}|\mu(I)| \\
\|\mu\| & :=\sup _{\Pi} S(\mu, \Pi) \quad \text { (Variation norm) }
\end{aligned}
$$

For continuous $h:[0 ; 1] \rightarrow \mathbb{R}$,

$$
S(\mu, h, \Pi):=\sum_{I \in \Pi} \inf h[I] \cdot \mu(I)
$$

$$
\int h \mathrm{~d} \mu:=\lim _{\Pi} S(\mu, h, \Pi)
$$

$\int h \mathrm{~d} \mu$ exists if $\|\mu\|<\infty$

signed measures and integral of cont. functions

$\mu: \mathcal{B} \rightarrow \mathbb{R} \quad \mathcal{B}=$ the Borel-subsets of $[0 ; 1]$

$$
\mu\left(\bigcup_{i=0}^{\infty} A_{i}\right)=\sum_{i=0}^{\infty} \mu\left(A_{i}\right) \text { for pairwise disjoint } A_{i} .
$$

For partition Π of $[0 ; 1]$ into intervals $(a, b),[a ; b)$ etc.

$$
\begin{aligned}
S(\mu, \Pi) & :=\sum_{I \in \Pi}|\mu(I)| \\
\|\mu\| & :=\sup _{\Pi} S(\mu, \Pi) \quad \text { (Variation norm) }
\end{aligned}
$$

For continuous $h:[0 ; 1] \rightarrow \mathbb{R}$,

$$
S(\mu, h, \Pi):=\sum_{I \in \Pi} \inf h[I] \cdot \mu(I)
$$

$$
\int h \mathrm{~d} \mu:=\lim _{\Pi} S(\mu, h, \Pi)
$$

$\int h \mathrm{~d} \mu$ exists if $\|\mu\|<\infty$

Examples

- Lebesgue measure $\lambda, \lambda(a ; b):=b-a, \int h \mathrm{~d} \lambda=\int h(x) \mathrm{d} x$
$-\mu(I):=(-1$ if $1 / 2 \in I, \quad 0$ else $), \quad \int h \mathrm{~d} \mu:-h(1 / 2)$

Riesz representation theorem

Theorem

1. For every linear continuous functional F there is a unique normalized function g of bounded variation such that

$$
F(h)=\int h \mathrm{~d} g \quad \text { and } \quad\|F\|=\operatorname{Var}(g) .
$$

2. For every normalized function g of bounded variation there is a unique signed measure μ such that

$$
\int h \mathrm{~d} g=\int h \mathrm{~d} \mu \quad \text { and } \quad \operatorname{Var}(g)=\|\mu\| .
$$

3. for every signed measure μ there is a unique linear continuous functional F such that

$$
\int h \mathrm{~d} \mu=F(h) \quad \text { and } \quad\|\mu\|=\|F\| .
$$

The first statement: Riesz representation theorem

Strong Jordan decomposition

Call $Y=Y^{+}-Y^{-}$a minimal decomposition iff $Y=Z^{+}-Z^{-}$implies $Y^{+} \leq Z^{+}$and $Y^{-} \leq Z^{-}$.

Theorem (Jordan decomposition)

1. Every linear continuous functional F has a minimal decomposition $F=F^{+}-F^{-}$into non-decreasing linear continuous functionals.
2. Every normalized function g of bounded variation has a minimal decomposition $g=g^{+}-g^{-}$into non-decreasing normalized functions of bounded variation.
3. Every signed measure μ has a minimal decomposition $\mu=\mu^{+}-\mu^{-}$into non-negative measures.

characterization of minimality

Theorem

1. A decomposition $\mathrm{F}=\mathrm{H}^{+}-\mathrm{H}^{-}$into non-negative functionals is minimal iff $\|F\|=\left\|H^{+}\right\|+\left\|H^{-}\right\|$.
2. A decomposition $g=s^{+}-s^{-}$into non-decreasing functions is minimal iff $\operatorname{Var}(g)=\operatorname{Var}\left(s^{+}\right)+\operatorname{Var}\left(s^{-}\right)$.
3. A decomposition $\mu=\nu^{+}-\nu^{-}$into non-negative measures is minimal iff $\|\mu\|=\left\|\nu^{+}\right\|+\left\|\nu^{-}\right\|$.

simple computability on operators and bv-functions

- $C[0 ; 1]$: Cauchy representation δ_{C}, rational polygons are dense
$-C^{\prime}[0 ; 1]: \quad\left[\delta_{C} \rightarrow \rho\right]$ (represents all continuous functions)

simple computability on operators and bv-functions

- $C[0 ; 1]$: Cauchy representation δ_{C}, rational polygons are dense
$-C^{\prime}[0 ; 1]: \quad\left[\delta_{C} \rightarrow \rho\right]$ (represents all continuous functions)
$-\mathrm{BV}_{0}:=$ normalized functions of bounded variation:
($\int h \mathrm{~d} g$ can be computed from $\operatorname{Var}(g)$ and g restricted to a countable dense subset.)
$\delta_{0}(p)=g$ iff
p encodes a sequence $\left(x_{i}, y_{i}\right)_{i \in \mathbb{N}}$ from \mathbb{R}^{2} such that
- the set $A_{p}:=\left\{x_{i} \mid i>1\right\}$ is dense and g is continuous on A_{p}
- $(\forall i) g\left(x_{i}\right)=y_{i}$, and
$-x_{0}=y_{0}=0$ and $x_{1}=1$

simple computability on measures

- BM the bounded non-negative Borel measures on $[0 ; 1]$:
$\delta_{m}\langle p, q\rangle=\mu$ iff $\mu[0 ; 1]=\rho(p)$ and q is a list of all (a, I)
($a \in \mathbb{Q}$, I open rational interval) such that $a<\mu(I)$.

Lemma

δ_{m} is the greatest (poorest) representation γ of BM such that $(h, \mu) \mapsto \int h \mathrm{~d} \mu$ is $\left(\delta_{C}, \gamma\right)$-computable.

simple computability on measures

- BM the bounded non-negative Borel measures on $[0 ; 1]$:
$\delta_{m}\langle p, q\rangle=\mu$ iff $\mu[0 ; 1]=\rho(p)$ and q is a list of all (a, I)
($a \in \mathbb{Q}$, I open rational interval) such that $a<\mu(I)$.

Lemma

δ_{m} is the greatest (poorest) representation γ of BM such that $(h, \mu) \mapsto \int h \mathrm{~d} \mu$ is $\left(\delta_{C}, \gamma\right)$-computable.

- SBM the set of signed Borel measures:
$\delta_{\mathrm{sm}}\langle p, q\rangle=\delta_{m}(p)-\delta_{m}(q)$ (difference of non-negative measures)

Computable Riesz representation

Theorem

1. The function $(F,\|F\|) \mapsto(g, \operatorname{Var}(g))$ is computable where $F(h)=\int h \mathrm{~d} g$ and $\|F\|=\operatorname{Var}(g)$.
2. The function $(g, \operatorname{Var}(g)) \mapsto(\mu,\|\mu\|)$ is computable where $\int h \mathrm{~d} g=\int h \mathrm{~d} \mu$ and $\operatorname{Var}(g)=\|\mu\|$.
3. The function $(\mu,\|\mu\|) \mapsto(F,\|F\|)$ is computable where $\int h \mathrm{~d} \mu=F(h)$ and $\|F\|=\|\mu\|$.
4. is the computable Riesz representation theorem.

Computable Riesz representation

Theorem

1. The function $(F,\|F\|) \mapsto(g, \operatorname{Var}(g))$ is computable where $F(h)=\int h \mathrm{~d} g$ and $\|F\|=\operatorname{Var}(g)$.
2. The function $(g, \operatorname{Var}(g)) \mapsto(\mu,\|\mu\|)$ is computable where $\int h \mathrm{~d} g=\int h \mathrm{~d} \mu$ and $\operatorname{Var}(g)=\|\mu\|$.
3. The function $(\mu,\|\mu\|) \mapsto(F,\|F\|)$ is computable where $\int h \mathrm{~d} \mu=F(h)$ and $\|F\|=\|\mu\|$.
4. is the computable Riesz representation theorem.

Corollary The three representations of the space $C^{\prime}[0 ; 1]$ via the names of $(F,\|F\|)$ of $(g, \operatorname{Var}(g))$ and of $(\mu,\|\mu\|)$ are equivalent. (correspondingly for the space of normalized bv-functions and of the signed measures)

Computable Jordan decomposition

Theorem

The following functions for minimal decomposition and their inverses are computable:

$$
\begin{aligned}
(F,\|F\|) & \mapsto\left(F^{+}, F^{-}\right) \\
(g, \operatorname{Var}(g)) & \mapsto\left(g^{+}, g^{-}\right) \\
(\mu,\|\mu\|) & \mapsto\left(\mu^{+}, \mu^{-}\right)
\end{aligned}
$$

Computable Jordan decomposition

Theorem

The following functions for minimal decomposition and their inverses are computable:

$$
\begin{aligned}
(F,\|F\|) & \mapsto\left(F^{+}, F^{-}\right) \\
(g, \operatorname{Var}(g)) & \mapsto\left(g^{+}, g^{-}\right) \\
(\mu,\|\mu\|) & \mapsto\left(\mu^{+}, \mu^{-}\right)
\end{aligned}
$$

Corollary The representations of $C^{\prime}[0 ; 1]$ via the names of the minimal decompositions $\left(F^{+}, F^{-}\right),\left(g^{+}, g^{-}\right)$and $\left(\mu^{+}, \mu^{-}\right)$are equivalent to the former ones. (correspondingly for the space of normalized bv-functions and of the signed measures)

exceptional points

For interval I let $\|F\|_{I}:=\sup \{|F(h)| \mid \operatorname{supp}(h) \subseteq I, \quad\|h\| \leq 1\}$,
For functionals F, bv-functions g and signed measures μ such that
$F(h)=\int h \mathrm{~d} g=\int h \mathrm{~d} \mu$

$$
\lim _{x \in I, \lg (\mathrm{I}) \rightarrow 0}\|F\|_{I}=\left|\lim _{y \searrow x} g(y)-\lim _{y \nmid x} g(y)\right|=|\mu(\{x\})|
$$

The three concepts are equivalent:
x contributes to $F: \Longleftrightarrow\|F\|_{x}:=\inf _{x \in I}\|F\|_{I}>0$,
g is discontinuous at $x \Longleftrightarrow \lim _{y \searrow_{x}} g(y) \neq g(x)$,
x contributes to $\mu: \Longleftrightarrow \mu(\{x\}) \neq 0$.
Our names do not tell us where these exceptional points are.

